Strategy Selection Revisited
The original Strategy Selection approach used two strategies, which were
manually registered and a simple [0, 1] list to decide which would be the
target of the strategy.
Because Python offers a lot of instrospection possibilities with metaclasses,
one may actually automate the approach. Let’s do it with a decorator
approach which is probably the least invasive in this case (no need to define a
metaclass for the strategies)
Reworking the factory
The factory now:
- 
is declared before the strategies 
- 
has an empty _STRATSclass attribute (it had the strategies to return before)
- 
has a registerclassmethod which will be used as decorator and which accepts an argument which will be added to_STRATS
- 
has a COUNTclassmethod which will return an iterator (arangeactually) with the count of the available strategies to be optimized
- 
bears no changes to the actual factory method: __new__, which keeps on using theidxparameter to return whatever is in the_STRATSclass attribute at the given index
class StFetcher(object):
    _STRATS = []
    @classmethod
    def register(cls, target):
        cls._STRATS.append(target)
    @classmethod
    def COUNT(cls):
        return range(len(cls._STRATS))
    def __new__(cls, *args, **kwargs):
        idx = kwargs.pop('idx')
        obj = cls._STRATS[idx](*args, **kwargs)
        return obj
As such:
- The StFetcherstrategy factory no longer contains any hardcoded strategies in itself
Decorating the to-be-optimized strategies
The strategies in the example don’t need to be reworked. Decoration with the
register method of StFetcher is enough to have them added to the
selection mix.
@StFetcher.register
class St0(bt.SignalStrategy):
and
@StFetcher.register
class St1(bt.SignalStrategy):
Taking advantage of COUNT
The manual [0, 1] list from the past when adding the strategy factory to
the system with optstrategy can be fully replaced with a transparent call
to StFetcher.COUNT(). Hardcoding is over.
    cerebro.optstrategy(StFetcher, idx=StFetcher.COUNT())
A sample run
$ ./stselection-revisited.py --optreturn
Strat 0 Name OptReturn:
  - analyzer: OrderedDict([(u'rtot', 0.04847392369449283), (u'ravg', 9.467563221580632e-05), (u'rnorm', 0.02414514457151587), (u'rnorm100', 2.414514457151587)])
Strat 1 Name OptReturn:
  - analyzer: OrderedDict([(u'rtot', 0.05124714332260593), (u'ravg', 0.00010009207680196471), (u'rnorm', 0.025543999840699633), (u'rnorm100', 2.5543999840699634)])
Our 2 strategies have been run and deliver (as expected) different results.
Note
The sample is minimal but has been run with all available
CPUs. Executing it with --maxpcpus=1 will be faster. For more
complex scenarios using all CPUs will be useful.
Conclusion
Selection has been fully automated. As before one could envision something like querying a database for the number of available strategies and then fetch the strategies one by one.
Sample Usage
$ ./stselection-revisited.py --help
usage: strategy-selection.py [-h] [--data DATA] [--maxcpus MAXCPUS]
                             [--optreturn]
Sample for strategy selection
optional arguments:
  -h, --help         show this help message and exit
  --data DATA        Data to be read in (default:
                     ../../datas/2005-2006-day-001.txt)
  --maxcpus MAXCPUS  Limit the numer of CPUs to use (default: None)
  --optreturn        Return reduced/mocked strategy object (default: False)
The code
Which has been included in the sources of backtrader
from __future__ import (absolute_import, division, print_function,
                        unicode_literals)
import argparse
import backtrader as bt
from backtrader.utils.py3 import range
class StFetcher(object):
    _STRATS = []
    @classmethod
    def register(cls, target):
        cls._STRATS.append(target)
    @classmethod
    def COUNT(cls):
        return range(len(cls._STRATS))
    def __new__(cls, *args, **kwargs):
        idx = kwargs.pop('idx')
        obj = cls._STRATS[idx](*args, **kwargs)
        return obj
@StFetcher.register
class St0(bt.SignalStrategy):
    def __init__(self):
        sma1, sma2 = bt.ind.SMA(period=10), bt.ind.SMA(period=30)
        crossover = bt.ind.CrossOver(sma1, sma2)
        self.signal_add(bt.SIGNAL_LONG, crossover)
@StFetcher.register
class St1(bt.SignalStrategy):
    def __init__(self):
        sma1 = bt.ind.SMA(period=10)
        crossover = bt.ind.CrossOver(self.data.close, sma1)
        self.signal_add(bt.SIGNAL_LONG, crossover)
def runstrat(pargs=None):
    args = parse_args(pargs)
    cerebro = bt.Cerebro()
    data = bt.feeds.BacktraderCSVData(dataname=args.data)
    cerebro.adddata(data)
    cerebro.addanalyzer(bt.analyzers.Returns)
    cerebro.optstrategy(StFetcher, idx=StFetcher.COUNT())
    results = cerebro.run(maxcpus=args.maxcpus, optreturn=args.optreturn)
    strats = [x[0] for x in results]  # flatten the result
    for i, strat in enumerate(strats):
        rets = strat.analyzers.returns.get_analysis()
        print('Strat {} Name {}:\n  - analyzer: {}\n'.format(
            i, strat.__class__.__name__, rets))
def parse_args(pargs=None):
    parser = argparse.ArgumentParser(
        formatter_class=argparse.ArgumentDefaultsHelpFormatter,
        description='Sample for strategy selection')
    parser.add_argument('--data', required=False,
                        default='../../datas/2005-2006-day-001.txt',
                        help='Data to be read in')
    parser.add_argument('--maxcpus', required=False, action='store',
                        default=None, type=int,
                        help='Limit the numer of CPUs to use')
    parser.add_argument('--optreturn', required=False, action='store_true',
                        help='Return reduced/mocked strategy object')
    return parser.parse_args(pargs)
if __name__ == '__main__':
    runstrat()